Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis.
نویسندگان
چکیده
Mouse models have provided significant insights into the molecular mechanisms of tumor suppressor gene function. Here we use mouse models of prostate carcinogenesis to demonstrate that the Nkx3.1 homeobox gene undergoes epigenetic inactivation through loss of protein expression. Loss of function of Nkx3.1 in mice cooperates with loss of function of the Pten tumor suppressor gene in cancer progression. This cooperativity results in the synergistic activation of Akt (protein kinase B), a key modulator of cell growth and survival. Our findings underscore the significance of interactions between tissue-specific regulators such as Nkx3.1 and broad-spectrum tumor suppressors such as Pten in contributing to the distinct phenotypes of different cancers.
منابع مشابه
Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases.
Recent studies have shown that several loss-of-function mouse models of prostate carcinogenesis can develop a spectrum of precancerous lesions that resemble human prostatic intraepithelial neoplasia (PIN). Here, we have investigated the malignant potential of the high-grade PIN lesions that form in Nkx3.1(+/-); Pten(+/-) compound mutant mice and demonstrate their neoplastic progression in a ser...
متن کاملRe: Nkx3.1 and myc crossregulate shared target genes in mouse and human prostate tumorigenesis.
Cooperativity between oncogenic mutations is recognized as a fundamental feature of malignant transformation, and it may be mediated by synergistic regulation of the expression of pro- and antitumorigenic target genes. However, the mechanisms by which oncogenes and tumor suppressors coregulate downstream targets and pathways remain largely unknown. Here, we used ChIP coupled to massively parall...
متن کاملProlonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice.
In this report, we have investigated the relationship between androgen levels and prostate tumorigenesis in Nkx3.1; Pten mutant mice, a genetically engineered mouse model of human prostate cancer. By experimentally manipulating serum levels of testosterone in these mice for an extended period (i.e., 7 months), we have found that prolonged exposure of Nkx3.1; Pten mutant mice to androgen levels ...
متن کاملEmergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice.
Although androgen deprivation therapy is a widely used treatment for patients with advanced prostate cancer, it ultimately results in the emergence of a hormone-refractory disease that is invariably fatal. To provide insights into the genesis of this disease, we have employed an in vivo model to investigate how and when prostate epithelial cells can acquire the ability to survive and proliferat...
متن کاملLoss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis.
Despite the significance of oxidative damage for carcinogenesis, the molecular mechanisms that lead to increased susceptibility of tissues to oxidative stress are not well-understood. We now report a link between loss of protection against oxidative damage and loss-of-function of Nkx3.1, a homeobox gene that is known to be required for prostatic epithelial differentiation and suppression of pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 5 شماره
صفحات -
تاریخ انتشار 2002